The new technique of magnetoencephalography (MEG) allows dynamic measure, that records the ongoing process of the brain with precise temporal resolution. Spontaneous magnetic slow (2-6Hz) and fast (12.5-30Hz) activity can be used to locate the underlying sources with sufficient accuracy by using the single current dipole model. EEG abnormalities have been consistently identified in schizophrenia (e.g. the phenomena of parenrhythmia, theta-delta- activity in the right posterior lobe, midfrontal theta, delta-activity). So far in literature data about spontaneous MEG activity in schizophrenics were not available. In this first study concerning spontaneous MEG activity in schizophrenia we investigated 14 schizophrenics and 10 healthy subjects. In schizophrenics we found a "concentration effect of dipoles" (slow and fast wave activity) on the left temporoparietal region in patients with early first onset (less than 28 years) and long duration of illness (less than 10 years). In control subjects as well as in patients with late onset and shorter duration of illness the dipole localisation in the left hemisphere was widely distributed over different hemispheric regions. The dipole density in all schizophrenics was significantly increased over the left hemisphere for both, slow and fast wave activity.
Hallucinations, perceptions in the absence of external stimuli are prominent
among the cor symptoms of schizophrenia. The neural correlates of these brief,
involuntary experiences are not well understood and have not been imaged
selectively. A patient may experience hallucinations in more than one modality
simultanously or at different times and they may or may not appear to emanate
from a single source.
Auditory verbal hallucinations are thougt to arise from a
disorder of inner speech (thinking in words), but little is known about how they
arise. Recently neural correlates of tasks which involve inner speech have been
examined in subjects with schizophrenia who hear voices by the use of rcBF,
SPECT and PET.
In schizophrenic patients with hallucinations blood flow was
significantly greater during hallucinations than in the non-hallucinating state in
Broca`s area. Flow was also higher during hallucinations in the left anterior
singulate cortex and regions in the left temporal lobe. The increased flow in
Broca`s area was not accounted for by changes in other clinical variables nor by
changes in the dose of neuroleptic drugs. Auditory hallucinations may also be
reflected in distinctive metabolic maps of the brain. Regional brain metabolism
was measured by positron emission tomography. Compared with the patients
who did not experience hallucinations, the patients who did experience
hallucinations had significantly lower relative metabolism in auditory and
Wernicke`s regions and a trend towards higher metabolism in the striatum and
anterior cingulate regions.
Neuroleptic treatment resulted in a significant
increase in striatal metabolism and a reduced frontal -parietal ratio, which was
significantly corrrelated with a decrease in hallucination scores. In serial
assessments with 123-IMP SPECT an increased accumulation of 123-IMP in
the left superior temporal area, which corresponds with the auditory association
cortex was shown in schizophrenic patients with auditory hallucinations. So far,
after several studies with different techniques in patients with auditory
hallucinations the following areas seem to be regions of interest in the
phenomenon of auditory hallucinations:
The new technique of Magnetoencephalography (MEG) could complete our
knowledge about the brain topography of auditory hallucinations. MEG is a
method of determining electrical activity in the brain noninvasively by detecting
the magnetic fields associated with electric currents produced by neuronal
activity. MEG has a very high time resolution, which can not be reached by other
techniques.
Whereas scalp-EEG detects both tangential and radial sources, i.e.
activity both in the sulci and in the gyri, MEG selectively measures tangential
sources, i.e. activity in the sulci. Scalp EEG measures extracellular volume
currents and MEG primarily intracellular currents. Finally, the spatial resolution
of MEG is about 1/3 better compared to scalp-EEG (Vieth, 1992a, Vieth,
1992b). Besides that magnetic fields are not distorted by the different
conductivities of the skull and the scalp as the EEG. With multichannel SQUID
magnetometers, field patterns can be obtained and source localizations
determined even with a "single shot" measurement without repositioning the
instrument.
Methods:
The 2x37-channel biomagnetic system (MAGNES II) of Biomagnetic Technologies, Inc. (BTi) has been used to record the MEG. The volume conductor (head) model, which we used, was spherical. The source model was the single dipole model. The MEG localization results have been inserted into an anatomical frame, obtained from the MRI scan. For this purpose it was necessary to determine the transformation parameters between the MRI and MEG-coordinate systems. Normally reference points were used at anatomical landmarks. But the number of these points was low, and the transformation accuracy was highly influenced by measuring errors. Therefore we developed a method to determine the transformation by a contour fit of the head surface. For our purpose an accessable and sufficient section of the head surface was scanned by an electromagnetic digitizer. Then the surface obtained by this procedure was fitted to the head surface reconstructed from the MRI scan. This transformation was exact (within 2 mmm), and was performed in more than 60 patients or subjects (Kober et al., 1992).
The 2x37 channel system allowed us to analyze spontaneous brain activity on
both sides of the head with all its dynamics in space and time. The separation of
sources was still one of the important questions and a challenge in brain
neurophysiology. Magnetic field maps with two extrema of high intensitiy only
were seen for short time sections changing in amplitude and gradually mixed
with changing irregular patterns across time. When single dipoles were
estimated this effect could still be seen, even when some precautions were taken
to separate the sources.
We developed a method, which is able to show the concentrations of dipoles across
time, the Dipole Densitiy Plot (DDP) (Kober et al., 1992, Vieth et al., 1992a,
Vieth et al., 1992b). It is a spatial averaging in order to decrease the influence of
the nonfocal activity. Noise is here the signal portion, which is not compatible
with the single dipole model.
The DDP uses consecutively estimated dipoles across a given analyzing time and delivers quantified dipole concentrations in three dimensions, which can be adjusted exactly to individual slices of the imaging techniques. In order to minimize the influence of simultaneously active multiple sources, we applied two different procedures:
Patients:
Spontaneous slow (2-6Hz) and fast MEG activity (12.5-30Hz) was measured in three schizophrenic patients (subtype:paranoid hallucinatory schizophrenia:ICD-10, F20.0). All patients had auditory hallucinations (imperative voices) during measurement. Two patients were treated with the neuroleptic haloperidole, one female patient was never treated with neurolpetics (first onset of illness). The control group consisted of three healthy probands. One day after her first measurement the female patient reported about no further auditory hallucinations. The MEG measurement in this patient was repeated on this day.
Results:
We separated the results of our measurement for Sensor A (left hemiphere) and
Sensor B (right hemisphere). Table 1 shows the number, density and
localisation of dipoles for slow (2-6Hz) and fast (12.5-30Hz) activity in
schizophrenics and control probands for Sensor A, in table 2 for Sensor B. We
also determined handedness (which is applied to be a peripheral laterality
marker of cerebral dominance) in all probands (by the use of the Edingburgh
handedness questionnaire).
Sensor A (left hemisphere):
In schizophrenic patients we found no striking effect for slow activity (2-6Hz)
over the left hemisphere compared to control probands. In both groups slow
activity was widely distributed, or concentrated on the central region of the left
hemisphere.The dipole number and the dipole density, which means the
percentage of one component, which dominates the signal (see methods), was
even higher in healthy probands than schizophrenic patients (see table 1). A
statistically significant difference was found in two schizophrenic patients for
fast activity (12.5-30Hz) over the left hemisphere compared to control probands
(see fig.1).
The standard density was about three times increased
compared to the density values of healthy probands. One of these two
schizophrenic patients was righthanded, the other ambidextrous. The
localisation of fast activity dipoles in both cases was concentrated on the
temporal region.
Sensor B (right hemisphere):
Dipole number and density for slow activity was increased in two control
probands compared to schizophrenic patients (see table 2). In all probands
(schizophrenic and healthy) slow activity dipoles were concentrated on the
central region. For two schizophrenic patients we found a statistically
significant increase for fast activity dipole density values.
One patient was lefthanded (see fig. 4), the other was the same ambidextrous
female patient, who showed a significant increase for fast activity dipoles over
Sensor A.
Control MEG:
One day after her first MEG we measured the ambidextrous drug free female
patient again, after she reported about a complete absence of auditory
hallucinations. The standard density for fast activity dipoles was reduced from
10.6 to 4.5 (see table 1 and table 3) over the left hemisphere (see also fig. 6).
Over the right hemisphere (see table 4) we still found a high fast activity
in the second investigation. In the third investigation (three days later)
the standard density for fast frequency was 3.8, which is a normal value.
Conclusions:
Different symptoms of schizophrenia may be related to distinct types of brain
dysfunction. It is possible to investigate the patterns of brain activity underlying
schizophrenic symptoms by mapping regional metabolism or cerebral blood
flow(rCBF) in vivo with positron emission tomography (PET) or single photon
emission computed tomography (SPECT). Using these technique, some authors
have related subsyndromes of symptoms to distinct rCBF patterns (Liddle et
al.), wheras others have focused on the metabolic changes associated with more
specific phenomena, most frequently auditory hallucinations (Cleghorn,
MKcGuire.). Previous rCBF, PET and SPECT studies have assessed the
patterns of activation in schizophrenic patients mainly in the temporal lobe. We
used the new technique of magnetoencephalography to investigate
schizophrenic patients with acute auditory hallucinations.
Primarily, if we had (without knowledge of our later results) to define hallucinations
in terms of cerebral activation we would have preferred the model of cortical
hyperactivity to that of hypoactivity. Finally we did not reject this hypothesis
after our investigations. Slow activity dipoles were not increased in schizophrenic
patients with auditory hallucinations over both hemispheres compared to
healthy control probands. We rather had the impression of a certain increase of
slow activity in healthy probands compared to schizophrenic patients.
The statistically significant differences between both goups were found in the fast
MEG activity of schozophrenic patients with auditory hallucinations.
Opposite to the results of slow activity, which was localized in different
regions of the hemispheres (central, frontal, parietal) we found a concentration
effect for fast activity on the temporal region of the left and the right
hemisphere. These results could be correlated to the peripheral laterality marker
of handedness.
The significant increase of fast dipole density on the right hemisphere was
found in a left handed patient, vice versa the increase on the left hemisphere in
a right handed patient.
The schizophrenic ambidextrous patient had the increase of fast MEG activity
in both hemispheres. If we accept the peripheral laterality sign handedness as a
marker for cerebral dominance these results point to a stronger activation of the
dominant hemisphere in auditory hallucinations. The principle of hemispheric
dominance is supposed to be less strong in ambidextrous people. The increase
of the dipole density for fast frequencies in the ambidextrous patient was in the
left and the right hemisphere, a finding, which could confirm this hypothesis.
In the same patient the clinical improvement with a complete absence of
auditory hallucinations was correlated to a significant reduction of the density
of fast activity over the left hemisphere, while the fast freuqency over the right
hemiphere was not (not yet) altered. After a further investigation also the right
hemisphere also reached normal values. Our MEG results confirm the findings of a
strong participation ( in the sense of a hyperactivation) of the temporal lobe in
auditory hallucinations.
Literature: